亲!您好!欢迎光临秒速时时彩_秒速时时彩投注_官网|首页—高端门业领跑者官网
13979819821
您现在的位置: 首页 > 产品展示 > 不锈钢自由门 > >> 正文
产品类目 CATEGORY

不锈钢自由门

双相不锈钢牌号在冷却时抗敏化能力相对较强

发布时间:2018-12-17 19:48

  双相不锈钢的应用日益广泛,用户对这类不锈钢也越来越熟悉。本文围绕双相不锈钢应用的难点之一 — 加工和焊接,介绍了双相不锈钢的各种特性,给出了加工和焊接双相不锈钢的基本原则和实用信息。

  内容包括:双相不锈钢的历史、化学成分、冶金学、耐腐蚀性能、力学性能、物理性能、技术条件、质量控制、切割、成形、焊接、应用等。

  双相不锈钢是一类集优良的耐腐蚀、高强度和易于制造加工等诸多优异性能于一身的钢种。它们的物理性能介于奥氏体不锈钢和铁素体不锈钢之间,但更接近于铁素体不锈钢和碳钢。双相不锈钢的耐氯化物点蚀和缝隙腐蚀能力与其铬、钼、钨和氮含量有关,可以类似于316不锈钢,也可高于海水用不锈钢如6%Mo奥氏体不锈钢。所有双相不锈钢耐氯化物应力腐蚀断裂的能力均明显强于300系列奥氏体不锈钢,而且其强度也大大高于奥氏体不锈钢,同时表现出良好的塑性和韧性。

  双相不锈钢的制造加工与奥氏体不锈钢的制造加工有许多相似之处,但也有重要区别。双相不锈钢的高合金含量和高强度等要求在制造工艺上作某些改变。本文面向加工制造商和承担制造任务的最终用户,它提供了关于双相不锈钢加工制造的实用信息。本文假定读者已具备不锈钢的加工制作经验,因此,给出了双相不锈钢和300系列奥氏体不锈钢及碳钢之间的性能和加工工艺的对比数据。

  双相不锈钢已有近80年的历史,它是一种混合显微组织,奥氏体相和铁素体相大约各占一半。

  早期的牌号是铬、镍和钼的合金。1930年在瑞典生产出第一批锻轧双相不锈钢并用于亚硫酸盐造纸工业。开发这些牌号是为了减少早期高碳奥氏体不锈钢的晶间腐蚀问题。1930年芬兰生产出双相不锈钢铸件,1936年,Uranus 50 的前身在法国获得专利。二战后,AISI 329型不锈钢成为公认的钢种并广泛用于硝酸装置的热交换器管道。3RE60是第一代专为提高耐氯化物应力腐蚀断裂(SCC)性能而研制的双相不锈钢牌号之一;后来,锻轧和铸造双相不锈钢牌号均用于各种加工工业的应用,包括容器、热交换器和泵。

  第一代双相不锈钢有良好的性能表现,但在焊接状态下有局限性。焊缝的热影响区(HAZ)由于铁素体过多而韧性低,并且耐腐蚀性明显低于母材。这些局限性使第一代双相不锈钢的应用,仅限于非焊接状态下的一些特定应用。1968年不锈钢精炼工艺,即氩氧脱碳(AOD)的发明,使一系列新不锈钢钢种的产生成为可能。AOD所带来的诸多进步之一便是合金元素氮的刻意添加。双相不锈钢添加氮可以使焊接状态下HAZ的韧性和耐腐蚀性接近于母材的性能。随着奥氏体稳定性的提高,氮还降低了有害金属间相的形成速率。

  含氮的双相不锈钢被称为第二代双相不锈钢。这一新的商品化进展始于70年代后期,正好与北海海上油气田的开发及市场对具有优异耐氯离子腐蚀性能、良好的制造加工性和高强度的不锈钢需求相吻合。2205成为第二代双相不锈钢的主要牌号并广泛用于海上石油平台集气管线和处理设施。由于这种钢的强度高,因此壁厚可减薄,可以减轻平台的重量,使这种不锈钢的应用有很大的吸引力。

  如同奥氏体不锈钢一样,双相不锈钢是一类按腐蚀特性排列的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代双相不锈钢可分为5种类型:

  超级双相不锈钢(PREN值40~45), 含25%~26%Cr,与含25%Cr双相不锈钢如2507相比,钼和氮的含量增加;

  表1 给出了第二代锻轧双相不锈钢和铸造双相不锈钢的化学成分,为便于比较,第一代双相不锈钢和常用奥氏体不锈钢也包括在其中。

  一般认为,双相不锈钢的相平衡比例为30%~70%的铁素体比奥氏体时,可以获得良好的性能。但双相不锈钢常常被认为是铁素体和奥氏体大致各占一半,在目前的商品化生产中,为了获得最佳的韧性和加工特性,倾向于奥氏体的比例稍大一些。主要的合金元素尤其是铬、钼、氮和镍之间的相互作用是非常复杂的。为了获得稳定的有利于加工和制造的双相组织,必须注意使每种元素有适当的含量。

  除了相平衡以外,有关双相不锈钢及其化学组成的第二个主要问题是温度升高时有害金属间相的形成。σ相和χ相在高铬、高钼不锈钢中形成,并优先在铁素体相内析出,氮的添加大大延迟了这些相的形成。因此在固溶体中保持足够量的氮非常重要。随着双相不锈钢制造经验的增加,控制窄的成分范围的重要性变得越来越明显。2205双相钢(UNS S31803,表1)最初设定的成分范围过宽,经验表明,为了得到最佳的耐腐蚀性能及避免金属间相的形成,S31803的铬、钼和氮含量应保持在含量范围的中上限,由此引出了成分范围较窄的改进型2205双相钢UNS S32205(表1)。S32205的成分就是今天商品化的2205双相不锈钢的典型成分。在本文中,除非另有说明,通常2205指的就是S32205。

  以下简单介绍几个最重要的合金元素对双相不锈钢的力学性能、物理性能和腐蚀特性的影响。

  钢中铬含量必须不低于10.5%才能形成稳定的含铬钝化膜保护钢不受大气腐蚀。不锈钢的耐蚀性随铬含量的增加而增加。铬是铁素体形成元素,钢中加铬可促使体心立方结构的铁素体形成。钢中铬含量较高时,需要加入更多的镍才能形成奥氏体或双相(铁素体-奥氏体)组织,较高的铬量也能促进金属间相的形成。奥氏体不锈钢铬含量至少为16%,双相不锈钢铬含量至少为20%。铬还能增加钢在高温下的抗氧化能力。铬的这一作用很重要,它影响热处理或焊接后氧化皮或回火色的形成和去除。双相不锈钢的酸洗和去除回火色要比奥氏体不锈钢困难。

  钼与铬的协同作用能提高不锈钢的耐点蚀的能力。当不锈钢中铬含量至少为18%时,钼在含氯化物的环境中耐点蚀和缝隙腐蚀的能力是铬的三倍。钼是铁素体形成元素,同时也增大了不锈钢形成金属间相的倾向。因此,奥氏体不锈钢的钼含量通常小于约7.5%,双相不锈钢的钼含量小于4%。

  氮提高奥氏体和双相不锈钢的耐点蚀和缝隙腐蚀的能力,它还能显著地提高钢的强度。事实上它是最有效的固溶强化元素和低成本合金元素。含氮双相不锈钢韧性的改善得益于其较高的奥氏体含量和金属间相含量的降低。氮并没有阻止金属间相的析出,但可推迟金属间相的形成,使得有足够的时间进行双相不锈钢的加工和制造。氮被添加到铬和钼含量高的高耐蚀性奥氏体和双相不锈钢中,以抵消它们形成σ相的倾向。

  氮是强奥氏体形成元素,在奥氏体不锈钢中能代替部分镍。氮可降低层错能并提高奥氏体的加工硬化率。

  它还通过固溶强化提高了奥氏体的强度。双相不锈钢一般都添加氮并调整镍含量以便获得适当的相平衡。铁素体形成元素铬和钼与奥氏体形成元素镍和氮相平衡才能获得双相组织。

  镍是稳定奥氏体的元素,镍促使不锈钢的晶体结构从体心立方结构(铁素体)转化为面心立方结构(奥氏体)。铁素体不锈钢含极少的镍或不含镍,双相不锈钢含镍量为低至中等,如1.5%~7%,300系奥氏体不锈钢至少含有6%的镍(见图1、2)。添加镍延缓了奥氏体不锈钢中有害金属间相的形成,但是在双相不锈钢中镍的延缓作用远不如氮有效。面心立方结构使得奥氏体不锈钢具有极佳的韧性。双相不锈钢中有近一半是奥氏体组织,因此双相钢的韧性比铁素体不锈钢显著提高。

  Fe-Cr-Ni合金三元相图是双相不锈钢冶金行为的指路图。从铁含量为68%处的三元截面图(图3)可看出:这些合金以铁素体(a)凝固,当温度下降至1000℃(1832℉)左右时,部分铁素体转变成奥氏体(g)(取决于合金成分)。在更低温度下,处于平衡态的铁素体和奥氏体几乎没有进一步的改变。从图3还可看出增加氮的影响。从热力学观点看,因奥氏体是由铁素体转变而来的,合金不可能跳过奥氏体的平衡态。然而,当继续冷却至较低温度时,碳化物、氮化物、σ相以及其他金属间相都可能成为显微组织的成分。

  冶金产品或制造加工中铁素体和奥氏体的相对数量取决于其化学成分和加热历史。如相图所显示,成分上较小的变化即会对两相的相对体积分数有较大影响。单独的铁素体形成元素和奥氏体形成元素在双相钢中也同样发挥作用。显微组织中的铁素体/奥氏体相平衡可通过如下的多变量线性回归来预测:

  T(摄氏温度)是退火温度,1050-1150°C,元素含量为重量百分数(wt%)。

  为达到使双相不锈钢具有理想相平衡的目的,主要通过调整铬、钼、镍和氮的含量,并控制好加热操作。然而,由于冷却速度决定了可转变成奥氏体的铁素体的数量,因此高温受热后的冷却速度将影响相平衡。因为快速冷却有利于保留铁素体,所以可能得到比平衡状态下更多的铁素体。例如,采用低热输入来焊接大截面的产品,会导致HAZ(热影响区)过量的铁素体。

  氮的另一个有效作用是提高了从铁素体开始形成奥氏体的温度,见图3,它增加了铁素体转变为奥氏体的比例。因此,即使在相对快速的冷却条件下,奥氏体数量也几乎能达到平衡状态时的水平。对第二代双相不锈钢而言,这一效应可减少HAZ铁素体过量的问题。

  因为σ相的形成温度低于冷却时铁素体转变成奥氏体的温度(图4),为避免冶金产品中出现σ相,可控制退火温度,确保钢从退火温度尽快淬火,防止冷却过程中形成σ相。所要求的冷却速度非常快,可使用水淬。在实际制造中,只有当焊接截面尺寸相差悬殊或以很低的热输入焊接厚截面时,才会遇到过度的冷却速度。

  双相不锈钢中的α相也是一个稳定相,它在低于525℃(950℉)的铁素体相中形成,其形成机制与全铁素体不锈钢中α相相同。铁素体不锈钢长时间暴露在475℃(885℉)左右的温度后,其中的α相会造成常温韧性的丧失,这就是所谓的475℃/885℉脆性。

  在不锈钢中,氮作为一个合金元素意味着在焊缝的热影响区沿铁素体-铁素体晶界和奥氏体-铁素体相界可能出现氮化铬。如果它的数量很大,退火时贫铬区来不及补偿失去的铬的时候,氮化铬会对钢的耐蚀性产生不利影响。不过,由于较高的氮能促使奥氏体的形成,奥氏体对氮溶解度高,所以第二代双相不锈钢很少含有较大量的氮化铬。此外,第二代双相不锈钢碳含量都很低,因此,通常无需考虑碳化物的有害影响。

  在某些温度下,有害的σ相、α相以及碳化物和氮化物相在数分钟内即可形成。因此,加工和制造以及使用时的热处理必须要考虑相形成的反应动力学以保证获得所需要的耐蚀性和力学性能。现已开发的这些双相不锈钢牌号都力求有最好的耐蚀性和充分延迟析出反应,使加工制造得以顺利进行。

  图5为2304、2205和2507双相不锈钢的等温析出图。碳化铬和氮化铬在析出温度开始析出的时间是相对较“慢”的1~2分钟。双相不锈钢比铁素体不锈钢或高合金奥氏体不锈钢析出要慢,部分原因是由于碳和氮元素在低镍奥氏体相中的溶解度高,以及氮对碳化物析出的延迟效应。因此,双相不锈钢牌号在冷却时抗敏化能力相对较强。这些牌号中碳化物和氮化物的形成动力学仅在一定程度上受到铬.钼及镍的影响,因此,所有含氮双相不锈钢牌号的析出动力学都与2205钢相似。

  σ相和χ相析出的温度略高但是与碳化物和氮化物析出的时间大致相同。铬、钼和镍含量更高的双相不锈钢牌号的σ相和χ相析出比2205更快;低合金化牌号析出则较慢。图5中的虚线说明σ相和χ相在较高合金化的2507中开始形成的时间较早,而在2304中开始时间较晚。

  α相析出于铁素体相内,它使铁素体相硬化和脆化。幸而双相不锈钢中含有50%的奥氏体,这种硬化和脆化所带来的危害不象在全铁素体不锈钢中那么大。α相析出造成韧性的损失(脆性)要慢于硬化的速度(图5)。由于发生脆化需要较长的时间,在加工制造时很少考虑α相脆性问题。但材料的使用温度上限则受到α相形成的制约 。

  因为长时间高温下使用会使钢的室温韧性丧失,压力容器设计规范已确立了最大许用设计应力下的使用温度上限值。德国TüV规范区别对待了焊接和非焊接结构件,它的温度上限值比ASME锅炉和压力容器规范更保守。

  在绝大多数标准奥氏体不锈钢应用的环境中,双相不锈钢都显示出较高的耐蚀性能,值得注意的是它们在某些情况下具有非常明显的优势。这是由于它们铬含量高,在氧化性酸中很有利,并且含有足够量的钼和镍,能耐中等还原性酸介质的腐蚀。

  双相不锈钢相对较高的铬、钼和氮含量也使它们具有很好的耐氯化物点蚀和缝隙腐蚀性能,其双相结构在可能发生氯化物应力腐蚀断裂的环境是一个优势。

  如果双相不锈钢的显微组织中含有至少25%到30%的铁素体,则其耐氯化物应力腐蚀断裂的性能远比奥氏体不锈钢304或316好。但铁素体易发生氢脆,因此双相不锈钢在氢有可能进入金属的环境或应用中耐蚀性不高,会发生氢脆。

  为了说明双相不锈钢在强酸溶液中的耐腐蚀性,图6给出了硫酸溶液的腐蚀数据。介质条件从低酸浓度的弱还原性环境到高浓度的氧化性环境及中等浓度热溶液的强还原性环境。

  2205和2507双相不锈钢在酸浓度最大约15%的溶液中,性能优于许多高镍奥氏体不锈钢;在酸浓度至少为40%的范围内,双相钢优于316或317不锈钢。

  双相不锈钢的含镍量不足以耐受中等浓度硫酸溶液或盐酸的强还原性腐蚀。在还原性环境有酸浓缩的湿/干界面,腐蚀尤其是铁素体的腐蚀就会开始并快速进展。

  双相不锈钢耐氧化性腐蚀的性能使它们成为硝酸和强有机酸装置优良的候选材料。

  图7显示在沸点温度下,50%醋酸和不同含量甲酸混和溶液中双相不锈钢和奥氏体不锈钢的腐蚀。尽管304和316不锈钢可用于室温和中等温度下的强有机酸介质,但2205和其他双相不锈钢在许多涉及高温有机酸的工艺中占优势,而且由于它们耐点蚀和耐应力腐蚀,也可用于卤代烃工艺。

  双相不锈钢的高含铬量和铁素体相的存在使其在碱性介质中具有良好的性能。在中等温度下,其腐蚀速度低于标准奥氏体不锈钢的腐蚀速度。

  为讨论不锈钢的耐点蚀和缝隙腐蚀的性能,引入临界点蚀温度这一概念。对于某一氯化物环境,每一种不锈钢都可用一个温度来描述其特征,高于此温度点蚀开始出现,并且24小时之内可发展到肉眼可见的程度。低于此温度则在无限长的时间内也不会产生点蚀。这一温度即所谓的临界点蚀温度(CPT)。它是对特定不锈钢牌号和特定环境的表征。由于点蚀的起始发生从统计学上看是随机的,而且CPT对牌号和产品的微小变化敏感,因此,对于不同牌号的CPT通常以一个温度范围来表示。而采用ASTM G 150标准介绍的研究工具,即采用电化学测量法可能可以准确和可靠地测定CPT。

  缝隙腐蚀也有一个类似的临界温度,称为临界缝隙腐蚀温度(CCT)。CCT取决于不锈钢试样、氯化物环境和缝隙的特性(紧密度,长度等)。由于缝隙的几何形状以及实际中很难再现同样缝隙的尺寸,CCT的测量数据要比CPT更分散。通常对于同样的钢和在同样的腐蚀环境中CCT往往比CPT低15~20℃(27~36℉)。

  双相不锈钢的高铬、钼和氮使其在含水环境中具有非常好的耐氯化物局部腐蚀性能。根据合金含量,一些双相不锈钢牌号甚至跻身于性能最好的不锈钢之列。双相不锈钢的铬含量相对高,所以耐蚀性好而且非常经济。

  图8给出了按照ASTM G 48 2(6% FeCl3)测定的一些固溶退火不锈钢耐点蚀和缝隙腐蚀性能的比较。材料焊接态的临界温度要低一些。临界点蚀或缝隙腐蚀温度高则表明材料耐腐蚀起始发生的能力较高。2205钢的CPT和CCT都显著高于316不锈钢。这使2205钢成为多用途的材料,适用于因蒸发导致氯离子浓缩的环境以及热交换器的蒸汽空间或保温层的下面。2205双相钢的CPT还表明它可用在碱水和脱气盐水中。它还成功地用于脱气海水中,在这些应用中,通过高流速的海水或用其他方法使钢的表面没有沉积物。

  在苛刻的应用中,如薄壁热交换器管,或表面有沉积物或有缝隙时,2205双相钢在海水中没有足够的耐缝隙腐蚀能力。然而,CCT高于2205的高合金化双相不锈钢如超级双相不锈钢,已经用于许多既要求高强度又要求耐氯离子腐蚀的苛刻海水条件。

  因为CPT与材料和特定环境成函数关系,有可能对单一要素的影响进行研究。利用按照ASTM G 48 A法确定的CPT,采用回归分析法得出钢的成分(考虑每种元素作为一个独立变量)和测定的CPT(相关变量)的关系。结果显示只有铬、钼、钨和氮对CPT有稳定的影响。关系式如下:

  式中4个合金元素乘以各自的回归常数之和通常被称为耐点蚀当量值(PREN)。不同研究者给出的氮的系数不同,通常使用16,22和30。秒速时时彩官网投注平台可根据PRE值给某一家族的牌号排序,但要注意避免对这一关系式的过分依赖。式中合金元素为“独立变量”,但实际并不真正独立,因为试验的钢是平衡成分。这种关系不是线性或交叉关系,例如铬和钼的协同作用被忽略。此关系式只是针对理想状态的材料,没有考虑金属间相、非金属相以及不当的热处理带来的影响,热处理不当也对耐蚀性有不利影响。

  双相不锈钢最早期的某些应用是基于它们耐氯化物应力腐蚀断裂(SCC)的性能。与具有类似耐氯化物点蚀和缝隙腐蚀性能的奥氏体不锈钢相比,双相不锈钢表现出明显优越的耐应力腐蚀断裂性能。双相不锈钢在化学加工工业的许多应用都是在有很大的应力腐蚀断裂危险的场合,代替奥氏体不锈钢的使用。然而,和其他所有材料一样,双相不锈钢在特定条件下也易于发生应力腐蚀断裂。这种情况可能发生于高温、含氯化物的环境或存在促使氢致断裂的介质条件。

  双相不锈钢可能会发生应力腐蚀断裂的环境条件如42%的沸腾氯化镁溶液试验,金属处于高温并暴露于加压含水氯化物系统的液滴蒸发试验(系统中的温度可能高于常压下的温度)。

  图9给出了若干轧制退火的双相不锈钢和奥氏体不锈钢在苛刻的氯化物介质中的相对耐氯化物应力腐蚀断裂性能。得出这些数据的液滴蒸发试验腐蚀条件很苛刻,因为试验温度为120℃(248℉)的高温,并且氯化物溶液由于蒸发而浓缩。试验中两种双相不锈钢2205和2507最终在所受应力达到其屈服强度的某一百分比时发生断裂,但这一百分数比316不锈钢相应的百分比值高得多。由于双相钢在常压下的氯化物水溶液中能够耐应力腐蚀断裂,例如耐保温层下的腐蚀,所以在已知304和316不锈钢会发生断裂的氯化物介质中,可以考虑使用双相不锈钢。

  表4总结了在不同腐蚀程度的各类试验介质中,几种不锈钢的氯化物应力腐蚀断裂行为。表左右两侧介质分别由于含有酸性盐和温度高而条件苛刻。表中间的介质条件不那么苛刻。钼含量小于4%的标准奥氏体不锈钢在所有这些条件下均发生氯化物应力腐蚀断裂,而双相不锈钢能够耐受上述中间范围的中等试验条件。

  耐氢致应力腐蚀受多种因素影响,不仅与铁素体含量有关,而且与强度、温度、充氢条件、外加应力等有关。双相不锈钢尽管对氢致断裂敏感,但只要仔细评估和控制操作条件,在含氢介质中仍可以利用其强度优势。这些应用中最突出的是输送盐水和高硫石油气混合物的高强度管道。图10说明了2205双相不锈钢在含氯化钠的酸性介质中对腐蚀免疫和敏感的范围。

0

网站首页 |秒速时时彩 |产品展示 |工程案例 |在线留言 |联系我们 |新闻资讯

秒速时时彩,秒速时时彩官网,秒速时时彩投注,秒速时时彩下注,秒速时时彩官网投注平台

Copyright © 2015-2020 秒速时时彩 版权所有

网站ICP备案号:沪ICP备22859123号 网站地图 网站导航